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Calculation of Bubble and Dew Points of Ideal
Multicomponent Mixtures by Using Statistical Methods.
Part Il. The Olefinic and Alkylbenzene Series

M. S. HIMMO, G. S. ALY, and A. S. SAID

DEPARTMENT OF CHEMICAL ENGINEERING
PO BOX 5969, KUWAIT UNIVERSITY
13060 SAFAT, KUWAIT

Abstract

The results obtained by using derived equations prove to be equally accurate
and more economic to simulate if applied to the olefinic and some selected members
of the alkylbenzene series as they were for the paraffinic series. A large number
of mixtures with a temperature span of 5.9 to 30.5°C are involved in this study.
Satisfactory results are also obtained when these equations, slightly modified by
appropriate pressure correction factors, are applied to hydrocarbon mixtures at
nonatmospheric pressures. The proposed approach is, however, not recommended
for nonideal hydrocarbon mixtures. The statistical approach can save up to 60%
of computer CPU time for mixtures containing up to 10 components. Computed
bubble and dew points are compared with both the conventional iterative method
and some VLE experimental data.

INTRODUCTION

In Part I of this work (1), the basic equations used to develop a statistical
method for computing bubble and dew points were derived for the par-
affinic series. This approach eliminates the need for Antoine’s constants
and requires only the mole fraction of each component in the mixture and
the normal boiling temperatures. The results obtained by using this non-
iterative algorithm were quite accurate. For instance, compared with the
conventional trial-and-error method, the average relative error in bubble
point calculations ranged from 0.008% for binary mixtures to 0.091% for
10-component mixtures. The corresponding average error values for dew-
point calculations were 0.009 and 0.255% for binary and 10-component
mixtures, respectively. It was also shown that the relative error in both
bubble and dew-point calculations was higher for mixtures containing
lighter components (Cs and C;) and decreased considerably for mixtures
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containing heavier components (C,; and above). The efficiency of the pro-
posed method was also demonstrated by a considerable saving in computer
CPU time consumption.

In Part II, the applicability of statistical method is investigated for two
more homologous series: the olefinic series and selected members of the
alkylbenzene series. The algorithm developed is also used to test mixtures
at total pressures different from atmospheric and mixtures containing cross-
fertilized components randomly chosen from all three homologous series.
The computed results in all cases are compared with the conventional trial-
and-error algorithm as well as with experimental values for multicomponent
mixtures whose VLE data are available.

EXTENSION OF THE STATISTICAL METHOD TO OTHER
HOMOLOGOUS SERIES

In order to test the validity of the proposed algorithm to other ideal
multicomponent hydrocarbon mixtures, the olefinic series and some se-
lected members of the alkylbenzene series are used. The olefins are slightly
polar hydrocarbons with a dipole moment ranging from 0.3 to 0.5 debyes
(2). At total pressures near atmospheric, the olefinic mixtures are therefore
assumed to behave ideally. The olefinic components investigated in this
study covered the range C¢H;, to C;Hs,. Four different composition pro-
files were used, as described in Part I.

Nine alkylbenzene compounds were selected with dipole moment rang-
ing from 0.0 to 0.5 debyes (2). These compounds are approximately of
similar size and have the same chemical nature. It was therefore assumed
that the chosen compounds would form ideal mixtures in the total pressure
range investigated.

The basic equations originally derived in Part I (1) for computing the
bubble point, #5, and the dew point, #p, of multicomponent paraffinic
mixtures were as follows:

g =l — AtB

tD = tav + AtD
where t,, is the average boiling point of the mixture, calculated from the
given mole fractions and normal boiling points, and Atz and At,, are tem-

perature increments given by the following equations (3):

Aty = apB exp (—BS/1.80) (1)
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TABLE 1
Constants A, in Equation (3)
Homologous series

A Paraffinic Olefinic Alkylbenzenes
A, 78 7.8 7.5
A, 400 400 400
A 1.0 1.0 1.0
A, 15 1.5 1.5
As 0.004 0.005 0.002
A 0.0005 0.004 0.01
and

Atp = apD exp (DS/1.50) 2)
where

i, = statistical moments =

ap = 1 + 0.002BE
ap = 1 + 0.004(DE + 0.000502)

B

6.8n,/ (1, + 400)

D = 7.8u,/(u, + 400)

o = standard deviation = *Vp,
S = skewness = p3/pi?

E = excess = py/p2 — 3
n

i=1

2 Xty — 1)’

For bubble-point calculations, Eq. (1) was found to be applicable with
the same degree of accuracy to all three homologous series. On the other
hand, Eq. (2) for dew-point calculations was slightly modified to fit the
olefinic and alkylbenzene series. For this purpose, Eq. (2) can be gener-
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alized as

Atp apD exp (A]DS/AMT) 3)

where
ap = 1 + As(DE + Asa?)
D = Ajpa/(p + Az)

The constants A; are given in Table 1 for the three homologous series
investigated in this work.

VALIDITY OF THE STATISTICAL METHOD AT PRESSURES
DIFFERENT FROM ATMOSPHERIC
If the developed algorithm, based on the statistical approach, is to be
applied at a total pressure different from atmospheric, the boiling points
of the individual components should be available at the required pressure.
Emperical equations were therefore developed to express Antoine con-
stants in terms of the normal boiling points for members of the three
homologous hydrocarbon series. The curve-fitting technique proposed by
Said and Al-Ameeri (4) was utilized.
Antoine constants A, B, and C for both paraffinic and olefinic series
can be expressed in terms of the normal boiling point, f,,, as follows:

A = 15.85 + 0.0027B:/(1 + 0.002B:) 4)
B = 2700 + 6.7p: (5)
C = 223 — 0.36B; (6)
where
Bi =t — 70

For the selected members of the alkylbenzene series, the following An-
toine constants were derived:

A = 15.9 + 0.002p: @)

B = 2800 + 8.0p: (8)
C = 222.2 — 0.20388,/(1 — 0.00078,) 9)
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where
B, = t,, — 80

Several computer runs were performed to test the applicability of Egs.
(1) and (3) to mixtures at total pressures different from atmospheric. The
pressure range investigated was between 0.5 and 1.5 atm in order not to
violate the validity of the pressure range for the Antoine constants used
in the conventional trial-and-error algorithm. It was found that the right-
hand sides of Eqs. (1) and (3) must be multiplied by appropriate pressure
correction factors. These factors were determined as P %! for bubble-
point calculations using Eq. (1), and P!¢ for dew-point calculations using
Eq. (3), where P is expressed in atmospheres.

COMPARISON WITH EXPERIMENTAL DATA
A literature search, done to collect experimental VLE data for the three
homologous hydrocarbon series investigated in this work (n-alkanes—n-

TABLE 2
Experimental Data for Some Binary Hydrocarbon Mixtures

Composition profiles, mole fractions

Mixtures 1 2 3 4
Benzene (1) 0.90 0.70 0.50 0.10
Toluene (2) 0.10 0.30 0.50 0.90
Benzene (1) 0.936 0.771 0.576 0.144
n-Heptane (2) 0.064 0.229 0.424 0.856
Benzene (1) 0.91 0.764 0.512 0.113
n-Octane (2) 0.09 0.236 0.488 0.887
n-Hexane (1) 0.962 0.792 0.585 0.172
Benzene (2) 0.038 0.208 0.415 0.828
n-Hexane (1) 0.869 0.707 0.508 0.10
Toluene (2) 0.131 0.293 0.492 0.90
n-Heptane (1) 0.9112 0.7268 0.5320 0.1124
n-Octane (2) 0.0888 0.2732 0.4673 0.8876
n-Heptane (1) 0.90 0.50 0.30 0.10
Toluene (2) 0.10 0.50 0.70 0.90
n-Octane (1) 0.909 0.72 0.516 0.15

Ethylbenzene (2) 0.091 0.28 0.484 0.85
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alkanes, alkenes-alkenes, and alkylbenzenes-alkylbenzenes) confirmed
that such VLE data are very scarce for these mixtures. For the investigated
pressure range, experimental data are available for the mixtures shown in
Table 2. Data are not available for any alkene—alkene mixture. It should
be noticed that Table 2 contains some mixtures which are cross-fertilized
from both paraffinic and alkylbenzene series.

RESULTS AND DISCUSSION

The modified algorithm was tested through a large number of computer
runs on the olefinic and alkylbenzene series. The computed bubble and
dew points were compared with those calculated by the conventional it-
erative algorithm. Tables 3-9 display some samples from both homologous
series. Each table depicts the components comprising the mixture, the four
composition profiles, the average boiling temperatures (z,,), the bubble
points (#3), and the dew points (fp) computed using both statistical and

°e 9 e =~ = =
5 8 8 8 B &

Rverage Temp.D!fference .Deg. C

o
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F1G. 1. Average temperature difference as a function of the number of components for the
olefinic mixtures.
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FiG. 2. Average relative error as a function of the number of components for the olefinic
mixtures.
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F1G. 3. Average temperature difference as a function of the number of componeants for the
alkylbenzene mixtures.
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FIG. 4. Average relative error as a function of the number of components for the alkylbenzene
mixtures.

conventional methods, and the relative errors, Eg and E,. The temperature
increments Atp, calculated using Eq. (1), and Atp, calculated using Eq.
(3), are also shown for convenience.

The general behavior at atmospheric pressure of both the olefinic series,
represented by 100 tested mixtures, and the alkylbenzene series, repre-
sented by 84 tested mixtures, is similar to that observed for the paraffinic
series investigated in Part I of this work (). This means that the relative
error in calculating ¢, is slightly higher than that for ¢5, and it decreases
considerably within each group of mixtures as the number of carbon atoms
increases. The relative error increases, however, as the number of com-
ponents in the mixture increases. This is clearly demonstrated in Figs. 1~
5 which represent the average values of the temperature differences, rel-
ative errors, and computer CPU time consumption for the tested mixtures
in each homologous series.

As can be seen from Figs. 1 and 2, both bubble and dew-point calcu-
lations for the olefinic series gave the same level of accuracy for binary,
tertiary, quaternary, and 5-component mixtures. For these mixtures the
range of the average temperature difference was 0.01-0.16°C, correspond-
ing to an average relative error range of 0.01-0.12%. For olefinic mixtures
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FIG. 5. Average computer CPU time as a function of the number of components at atmo-
spheric pressure.

containing more than 5 components, the relative error increases for both
ts and tp. Thus, for the twelve 10-component mixtures tested, the average
temperature difference was 0.43°C for f5 corresponding to an average rel-
ative error of 0.22%, while the corresponding values for ¢, were 1.36°C
and 0.58%, respectively.

The selected members of the alkylbenzene series behaved more ideally
compared to the olefinic series, especially as the number of components
increased. As Figs. 3 and 4 clearly show, the average temperature differ-
ence for ¢ for mixtures containing up to 5 components had a range of
0.02-0.05°C, resulting in an average error range of 0.02-0.04%. For the
eight 8-component mixtures investigated in this series, the corresponding
values increased to 0.11°C and 0.08%, respectively. The dew-point cal-
culations gave an average temperature difference range of 0.02-0.16°C,
corresponding to an average relative error range of 0.01-0.12%, respec-
tively.

The maximum, minimum, and average relative error in calculating both
bubble and dew points for the olefinic and alkylbenzene series were con-
sistently higher whenever the lighter components Cs and C, were involved.
The same behavior was observed with the paraffinic series [1].



12: 49 25 January 2011

Downl oaded At:

BUBBLE AND DEW POINTS OF IDEAL MIXTURES. II 1047

Averoge Relative Error, 2

F1G. 6.

Rveroge Relative Error, X

0.00
A tD ot 0.5 atm o {B at 0.5 atm
% 0 at 1.5 atm atd at 1.5 atm
0.50
o.40} |
0.0}
0.201
A
0.10f T
-._A..
0.00 i i L L L il ] L 1]
0 1 2 3 4 5 L] 7 8 9 10
Number of Components
Average relative error as a function of the number of components for the paraffinic
mixtures at a total pressure different from atmospheric.
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FiG. 7. Average relative error as a function of the number of components for the olefinic

mixtures at a total pressure different from atmospheric.
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FIG. 8. Average relative error as a function of the number of components for the alkylbenzene
mixtures at a total pressure different from atmospheric.
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FiG. 9, Average computer CPU time as a function of the number of components at a pressure
different from atmospheric.
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FiG. 10. Statistical and experimental values of bubble and dew points for benzene (1)-toluene
(2) mixtures.
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FiG. 11. Statistical and experimental values of bubble and dew points for benzene (1)-toluene
(2)-ethylbenzene (3) mixtures.
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TABLE 10
Comparison between Computed (statistical and conventional) and Experimental Bubble
Points for Binary Hydrocarbon Mixtures at Atmospheric Pressure

(Statistical — (Conventional — (Statistical —~
Experimental) Experimental) Conventional)
Mixtures °C % °C % °C %
Benzene (1)
n-Heptane (2) 1.80 2.09 1.78 2.09 0.02 0.03
Benzene (1)
n-Octane (2) 1.68 1.75 1.71 1.79 0.05 0.06
n-Hexane (1) 1.92 2.69 1.93 2.71 0.01 0.01
Benzene (2)
n-Hexane (1)
Toluene (2) 1.92 2.29 1.94 2.31 0.03 0.04
n-Octane (1)
Ethylbenzene (2) 1.16 0.90 1.15 0.90 0.01 0.10
n-Heptane (1) 1.92 1.86 1.91 1.84 0.007 0.007
Toluene (2)
n-Heptane (1) 0.30 0.28 0.35 0.31 0.06 0.05

n-QOctane (2)

Regarding the validity of the proposed algorithm at total pressures dif-
ferent from atmospheric, a large number of computer runs were performed
within a total pressure range of 0.5-1.5 atm. This range was chosen in
order not to violate the validity of the pressure range specified for the
Antoine constants used in the conventional trial-and-error algorithm. Fig-
ures 6-8 display some results of the average relative errors obtained for
the paraffinic, olefinic, and the alkylbenzene series, respectively. As can
be seen, Egs. (1) and (3), modified by appropriate pressure correction
factors, gave satisfactory results for the total pressure range investigated.
The alkylbenzene series gave better results with an average relative error
range of 0.05-0.47% at the lower pressures and 0.09-0.18% at the higher
pressures. The corresponding values for the olefinic series are (0.39-0.53
and 0.29-0.69%, respectively, while those for the paraffinic series are 0.31-
0.40 and 0.27-0.45%, respectively.

Regarding the average computer CPU time consumed, Fig. 9 shows
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values very similar to those depicted in Fig. 5. Incorporating the Antoine
equations specifically developed for the three hydrocarbon series did not
increase the CPU time consumed by the proposed algorithm. Both Figs.
5 and 9 clearly show that for mixtures containing up to 5 components,
there is practically no difference in the average computer CPU time con-
sumed in calculating 75 and ¢,. The difference increases, as expected, with
any further increase in the number of components. By using a UNISYS
model 1172 mainframe, the average CPU time consumed in computing the
bubble and dew points for 10-component mixtures with the statistical non-
iterative approach are 8.5 and 9.9 ms/mixture, respectively. The corre-
sponding values using the conventional trial-and-error approach are 22.6
and 23.3 ms/mixture. Thus, about 60% of the average computer CPU time
can be saved. This saving decreases as the number of components in the
mixture decreases, but was always above 46%.

An attempt was made to compare the proposed noniterative method
with experimental values for the three hydrocarbon series investigated. A
literature search revealed that experimental VLE data are very scarce for
these mixtures. Figures 10 and 11 and Table 10 show some results for those
mixtures whose VLE data were available in literature.

1000
(1} Benzene-Heptane (3} N-Hexane-Toluene
(2) N-Hexane-Benzene (4) N-Heptane-Toluene
800 F
9 600}
£
T 400+ {1)
200 (4)
0 L
0.0 0.5 1.0

x(1), mole Froc.

FIG. 12. Heat of mixing for hydrocarbon mixtures, at 25°C, having components from different
homologous series.
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It can be observed from Fig. 10 that for the binary mixture benzene-
toluene, the average relative error over the concentration range investi-
gated did not exceed 0.55%. For the tertiary mixture benzene—toluene-
ethylbenzene, shown in Fig. 11, the average relative error was 0.86% for
the bubble point and 2.56% for the dew point. It is noteworthy that when
the experimental data were compared with those calculated by the con-
ventional trial-and-error method, the same level of accuracy was obtained
for both mixtures.

As expected, neither the statistical nor the conventional method gave
satisfactory results when mixtures consisting of cross-fertilized components
from paraffinic and alkylbenzene series were investigated. This is clearly
shown in Table 10 where the accuracy levels of the bubble point calculations
are given in terms of average temperature differences and average relative
errors. The nonideal behavior of such mixtures can be demonstrated by
their heats of mixing at 25°C, which are displayed in Fig. 12.
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